Examine parameter recovery and performance using simulated data through parallelization

sim_test(icondition, stan = TRUE, sem = TRUE, seed = 20220415)

Arguments

icondition

integer indicating the iteration of simulation condition

stan

boolean indicating whether estimation results should be compared with thurstonianIRT stan

sem

boolean indicating whether estimation results should be compared with thurstonianIRT lavaan and mplus

seed

random seed

Value

save a timestamped RData file in the current working directory

Examples

if (FALSE) {

# load parallel package
library(parallel)

# Simulation conditions
n_person      <- 2
n_item        <- 4
n_neg         <- 1
n_block       <- 5
n_dim         <- c(4, 6)
n_iter        <- 100
n_burnin      <- 20
step_size_sd  <- 0.1

condition_mat <- expand.grid(n_person = n_person,
                             n_item   = n_item,
                             n_neg    = n_neg,
                             n_block  = n_block,
                             n_dim    = n_dim,
                             n_iter   = n_iter,
                             n_burnin = n_burnin,
                             step_size_sd = step_size_sd)

n_condition   <- nrow(condition_mat)

# create clusters
n_core <- detectCores()
cl     <- makeCluster(n_core)
RNGkind("L'Ecuyer-CMRG")

# load libraries in clusters
clusterEvalQ(cl, library(thirt))
clusterExport(cl, "condition_mat")

# simulation tests
parLapply(cl, 1:n_condition, sim_test)

# stop cluster
stopCluster(cl)
}